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1. Introduction

The H-theorem was first introduced to statistical mechanics by
Boltzmann in 1872 [1]. His original proof of the theorem was based on
the assumption of the existence of inverse collisions or the symmetry of
the collision kernel with respect to the initial and final states of colliding
molecules. As was noticed by Lorentz, this assumption is not generally
true for polyatomic molecules or molecules with internal degrees of
freedom. In his later treaties of the gas theory [2], Boltzmann himself
extended his proof by considering cycles of collisions and thus without
the use of the previous assumption. Since that time, probably many
people must have noticed that the proof could be simplified. His
attention to this problem aroused by Pauli, Stueckelberg [3] noted
briefly that the unitarity of the scattering matrix of binary collisions is
sufficient to prove the H-theorem. More recently Waldmann [4] dis-
cussed this in greater details in a paper given to the centennial celebra-
tion of the Boltzmann equation.

In non-equilibrium statistical mechanics, the so-called master equa-
tion is often used to formulate the irreversible evolution of a given
system, which is assumed to be a Markoffian process. H-theorems for
Markoffian processes are essentially much simpler than those for the
Boltzmann equation, because the evolution equation for the former is
linear whereas that for the latter is non-linear. For pedagogical reasons,
however, the proof is usually made with the use of the detailed balance
assumption or the symmetry of the transition probability rate. Many
years ago Yosida [5] gave a proof of the H-theorem for a Markoffian
process without any such assumption. Since Yosida’s proof seems to
have remained unnoticed by most physicists, I like to present here a
simple version of his proof and also some generalizations of it which
may be of some relevance to the general aspects of non-equilibrium
statistical mechanics.

2. Markoffian processes

We consider a Markoffian process x(#) assuming a continuous time ¢
and a continuous random variable x which may be a multi-component
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vector. The process is generally non-stationary so that the Chapman—
Kolmogorov equation is written as:

P(y,t<—~x,s)=fP(y,te—z,'r)dzP(z,w—x,s), t>7>s5, (1)

for the probability density of transition from x to y over the time
interval (s, ¢). The transition probability satisfies the conditions,

fdyP(y,t<—x,s)=1, P(y,tex,5)20. ()
For an infinitesimal time interval A¢, the transition probability is
assumed to take the form,

P(y,tex,t—At)=8(x—y)+At(y|T,|x)+0(At), 3)

where Dirac’s bracket notation is used for convenience to represent the
integral kernel of the evolution operator T,. The forward equation is
then written as:

WOty o uxo= (TG0, @

and the backward equation as:

H o, o 2yt e [0 DGIL. - ©

The fundamental solution of eq. (4) or eq. (5) with the initial or the final
condition,

x[/(y,s)=8(y—x), or 11/+(x9 t)=8(x~y)a

is the transition probability P(y, t«x, s). The general solution of eq. (4)
is given in the form,

Wy, 1)= [ P(y, tex, 5)dxy(x) 6
for a given function y(x) at time s. For eq. (5) it is

VH(x9)= [¥T () Ay P(y, tex, 5), (7)

for a given function y*(y). The expression (7) may be written as
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(YT (x(2))Dy , which is the expectation of the random Varia_ble Y (x(1))
at time 7 when the system has started from x at the initial time s. By the

Markoffian property (1), ¥(y, ¢) and ¢ *(x, s) satisfy the equations,

W, )= [P(y,tez,1)dzd(z, 1) 1> (8)
and

¢+(x,s)=fx[/+(z,¢)dzP(z,T<—x,s), T>s. 9

If the process is stationary, the transition probability P( Vs .t<——x,s)
depends only on the time difference 7=¢—s. In such a case it is more
customary to write the expression (7) as:

T, f(x)=f(x,7)= [ f(»)dy P(y,7ex,0), (10)

defining a semi-group transformation 7;. As a function‘of X, i_t .is equal
to the expectation of f(x(7)) when the initial value x(0) is specified to x.
Corresponding to eq. (9) we have:

T,f(x)=f7;f(z)dzp(z,z—s<—x,0). (11)

A familiar example of eq. (4) is the diffusion process,

o9(r.1) _ @ C 19
=3 >t 1)+ bY>t‘I/(y9t)> ( )

a7 3 a(y, )¥(y,1) 2y (r,1)

for which the backward equation is:

+ 02
— ._____a¢ é:’ s) =—a(x, s)—a%\p*(x,s)+b(x, S)B;;‘P+(x’s)' (13)

If the process is stationary, the backward equation can be written as:

L fx,m) = ) = fx, ) +b(x) 55 ). (14)
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3. H-Theorems
Yosida’s original H-theorem may be stated as follows:

Theorem 1. Assume that the stationary Markoffian process has the
invariant measure (equilibrium distribution) ¢,(x). Then it holds that:

[ dxCT () Z [9(x)dxC(TA(x)), s<t, (15)

where C(£) is an arbitrary convex function of ¢ over the interval which
covers the set of all possible values of 7, f(x).

For the proof, we first note that the convex property of C(§¢) means
the inequality:

2 CEmzc(Zwt:) (16)
for

4

Sw=1, wz0.

By taking
¢=T. f(z) and w(£)=P(z,t—s5<x,0)20,
and replacing the weighted sum by a weighted integral, the inequality
(16) gives:
fC(];f(z))dzP(z, t——se—x,O)iC(fTsf(z)dzP(z, t——se—x,O))
=C(T, f(x)).
Multiplying this with ¢,(x) and integrating the both sides, we obtain eq.

(15) by noticing the equation:

[P(y,rex,0)dx g(x)=»). (17)

This theorem is very general. It holds true for arbitrary functions f
and C as long as the required conditions are satisfied. However, it is
concerned with the backward equation and is less appealing to physi-
cists than the more familiar types of H-theorems concerned with the
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forward equation. Such a theorem 1is states as:

Theorem 2. Let y(x,t) be a solution of the forward equation of a
stationary Markoffian process (eq. (4) with a time-independent evolution
operator I') and ¢,(x) be its invariant measure satisfying the condition
¢,(x)>0. A generalized H-function is defined by:

He(0)= [ C( e )))qse(x)dx, (18)

using an arbitrary convex function C(£). The H-function never in-
creases in time, namely:

Ho(s)2H(1), if s<t. (19)

The proof is similar to the previous one. By choosing the weight
function,

w(x)=P(y, te=x,5)b(x)/$(») 20,

which satisfies the condition,
fw(x)dle,
we apply the inequality (16) to:
¥(x,5) . ( Y(x,) d)
fc( ¢e<x)) (axzc| [ o mdx
=C(¥(y, 1)/ (1))

where egs. (8) and (17) are used. This means that:

Y(x, 5) . $)0(x)dx (¢(y, ))
fc( L )Pu,r a(oarzc( 2D o ).

When integrated over y, this yields the required inequality.
The theorem can be generalized to:

Theorem 3. Let y,(x, t) and y,(x, t) be two different solutions of the
forward equation (4) of a non-stationary Markoffian process. Assuming
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that ,(x, ) >0, a generalized H-function is defined by:

Hy,(t)= fd C(%( i)‘l’z(xaf): (20)

with an arbitrary convex function C. Then the H-function never in-
creases in time, namely:

H,(s)2H,(t) if s<t.
The proof is the same as before. We choose the weight function:
w(x)=P(y, t<x,5)(x,5) /¥y, 1),

which satisfies the condition:

jw(x)dx= 1.

Then the inequality (16) gives:
xp,(x,s))w . ( h(x,s) )
fc(%(x,s) (Vx2S sy "L

=C( ‘Pl(yst))‘

4/2()/ s t )

Multiplying both sides by y,(y, ?) and integrating them over y we get
the required inequality. Obviously theorem 2 is a particular case of
theorem 3 for the choice of Y,(x, #)=¢.(x) which is possible for a

stationary process having an invariant measure.
The most familiar choice of C is:

C(§)=¢logé, (21)

which is important and useful because of its extensive property. Then
the H-function (18) becomes:

H(t)= [ dxy(x, 1) {log ¥, (x, 1) ~log ¢,(x)} (22)

for a stationary process. This corresponds to the free energy function
generalized to a non-equilibrium system in a stationary environment.
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For a more general non-stationary system, eq. (21) gives:

Hya(1)= [dxdy(x, 1)logya(x, 1) /a(x, ). (23)

If Y,(x, ) also satisfies the condition ,(x,7)>0, ¢, and ¢, can be
interchanged so that a symmetrical H-function can be defined as:

x,1)

1x’/z( 1)’ 2

()= [[ax(t( 1) 4ol 1)) log 12

which never increases in time.

4., Comments

Although it is not entirely new, theorem 3 is worth noting. In fact it was
first noted more than twenty years ago by Lebowitz and Bergmann [6]
who proved the theorem for the H-function of the form (23). As was
discussed by these authors, it is an interesting theorem of some impor-
tance for statistical mechanics of non-equilibrium systems. It means
under some appropriate conditions the asymptotic uniqueness of statis-
tical behavior of a system exposed to a non-stationary environment.
This is indeed what we experience in a great many cases of ordinary
circumstances. Suppose that a system is subject to external forces or is
in contact with external reservoirs which are changing in time. The
response of the system to these external conditions is generally depen-
dent on the initial condition in which the system is prepared. As the
time goes on, however, the memory of the initial preparation usually is
lost. The response becomes asymptotically independent of the initial
conditions and is solely determined by the nature of the system and of
its interaction with the environments. This asymptotic uniqueness is
generally true in mear equilibrium situations, where the response is
linear in off-equilibrium parameters. Beyond the regime of linear re-
sponse, the same uniqueness of asymptotic responses is very commonly
observed. It should be emphasized, however, that the uniqueness theo-
rem can be violated in some cases which are by no means rare. There
are branching phenomena which ‘may delicately depend on the initial
states of the system and also on the non-linear interactions within the
system as well as those with the environment.

The asymptotic approach to a unique distribution in non-stationary
Markoffian processes is a generalization of the existence of an invariant
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measure and the approach to it in stationary Markoffian processes.
Lebowitz and Bergmann proved their theorem much in the same spirit
as that of theorem 3. Namely, they noticed that the detailed balance
condition or the direct symmetry of transition rate kernel is not neces-
sary but a weaker integral condition is sufficient to prove the asymptotic
approach. Also they noted that the decreasing property of the function
(23) or (24) is proved under a weak condition.

In order that the theorem be meaningful, the sets of x where the two
functions ¥, and ¢, take non-vanishing values must be identical except a
set of zero measure. The set must be indecomposable in the same sense
of the word familiar in ergodic theories to guarantee the uniqueness.
Furthermore the process must be such that no runaway is possible.

These are only qualitative statements of the condition for the unique-
ness of asymptotic distribution which must be formulated in a more
rigorous manner. At the same time it will be an important and interest-
ing problem to study the ways how the uniqueness is violated. It may
also happen that a solution of the evolution equation ceases to be
analytic at a certain time point, in which case a sort of phase change
may occur or even an explosion may take place. Such a study will be
useful for understanding of various phenomena in non-equilibrium
non-stationary physical processes.
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