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Diamagnetism of metals7

.It is shown that in quantum theory even free electrons, besides
splr_l-paramagnetism, have a non-vanishing diamagnetism origi-
nating from their orbits, which is due to the limitation of the
_electron orbits in the magnetic field. A few further possible
inferences concerning this orbit limitation are indicated.

1. Up to now, it has been more or less quietly assumed that the
magnetic properties of electrons, other than spin, are due exclu-
sively to the binding of electrons in atoms. For free electrons, the
classical zero-result is assumed for the orbital effect, on the basis
that the Fermi integral of the corresponding Hamiltonian, just as
the Boltzmann function, is independent of the magnetic field. How-
ever, a quantum phenomenon is thereby allowed to be neglected.
In the presence of a magnetic field, the motion of the clectron is
obviously finite in the plane perpendicular to the field. This leads,
9f necessity, to a partial discreteness (corresponding to the motion
in this plane) of the eigenvalues of the system, which gives rise, as
will be shown, to a non-vanishing orbital magnetism. ’

The Hamiltonian of a free electron in a magnetic field can be
written in the familiar form:

m?  mw:  mw?
E=—14 2243
2 + 2 + 2 (1)

where

b = 1 _eH pn = 1 eH 1
1 mP1 2cy’ 2—m(1’2+’2—cx),”3=;"11?3 2
are the velocities of the electron (H is the absolute value of the
magnetic field in the direction of the z-axis). The motion in the
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direction of the field is independent of the field and of other com-
ponents of motion, and can be split off by putting p; simply equal to
a constant, which corresponds to the Schrodinger function

W0t 3, 2) = ix, y)eri, )

The energy value of the system will then be represented as the sum
of two independent terms. Now, instead of having to solve the
two corresponding Schrodinger equations for the xy-motion, we
can use an artificial method for deriving the energy values by
writing down the commutation relationships of the velocity com-
ponents v, and v,. From equation (2) it follows directly that

EeH
[v1, V2)_= 0303 — V0 = C))

i'cm?

since, as is well known [x, y1_=[p1, P.]_=0,[p1, ¥]_=[P2, yl_=Hhli.
The constant on the right-hand side of equation (4) is reminiscent
of the usual p, g-commutation relation. In order to come back to
that case, we can now temporarily introduce the coordinates P and
Q by means of

P eH

—, 7 = )
\/m cma/m

The commutation relation reduces to the usual form [P,Q]_ = #/i.
The equation referring to the energy can now be written in the form:
P? + (eH/mc)*Q?

> : ©
This, however, is nothing but the Hamiltonian of a linear oscillator

with mass m and frequency @ = eH/mc. The eigenvalues of such
a system are well known to be equal to

E=@n+ D=0+ é)-’%ﬁcH, O

vy =

E =

where n can assume all positive integral values. Together with the
z-motion this gives

_ eh p?
E-(n+‘})mcH+

2m’

for the eigenvalue of the translational motion of the electron.

®
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The .eigenfunctions can also be determined in a simple manner.
For this purpose we eliminate one of the coordinates, for example

x, from the velocity operators (and thus also from the energy
operator), by putting

[ ieHxy\
= € — ——
!/l i xp ( zﬁc ) X' (9)
This gives )
hoy eH [ ieHxy\ (% d
v = e — — = — y ——Z eH
W iox ch!// exp( 2iic) (lax_: )’
Eoy eH [ ieHxy\ | k0
Y =—r +—xy = - o
¥ oy 2 | exP ( 2hc )_ ioy (10)

The Schrédinger equation corresponding to this is written:

{(f_i)z Eo  eH \?
iy +(_i'5x—ii_c )—2mE}x‘=0. 11

This e.quati'on does not contain x explicitly; thus, its solutions can
be written in the exponential form

x = (y), (12)
where ¢ is a constant and ¢ is no longer dependent on x. If we

substitute equation (12) into equation (11), we obtain immediately
for ¢ an oscillator equation

d’¢ 2m m (eH\?> c \?
ot 25 () bme) Je-o @
which is just as we should expect from what has previously been

said. The * equilibrium point ” of this oscillator is at the point

n = c¢/eH. Thus, we obtain finally for the complete eigenfunction
of the system

Y = I:exp—l’; (p3z + ox — %Ixy)]qb,,[)\/%(y - é—la)], (14)

where ¢, denotes the eigenfunction of the equation

d*¢,

22 @2n+1—u®¢,=0. @15
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The quantity o does not enter into the eigenvalue. Since it can
assume an arbitrary value, our problem is still degenerate in a
continuous way. In order to determine the density of the eigenvalues
we replace, as usual, the infinite space by a finite container with
linear dimensions 4, B and C in the x-, y- and z-directions. In the
z-direction the number of possible p;-values in the interval Ap is
well known, and is equal to

Rp,= Sk Ap. (16)
In a quite similar manner, we obtain for the x-direction
A
= — Ac.
R Ax 2 P ﬁ G (17)

In the y-direction we require that the trajectory always lies in the
container at a sufficient distance from the walls. Then we need not
consider the influence of the  y ”-walls, because of the rapid damp-
ing of ¢, with range. Since the number of trajectories colliding at
the walls can be considered as small, with an adequately large
container, then we can assume that this requirement gives us prac-
tically all the existing trajectories. On account of the large container
dimensions, we can thus neglect also the radius of the trajectory and
we can simply write
¢
0< " HG < B
or

0<a<e—fH- (18)

If, now, we wish to obtain the total number of eigenvalues
corresponding to the given non-degenerate quantum number n,
then we have to substitute Ac = (eB/c)H in equation (17). This
gives

eH eH

= 2nhe 4B = 2nkc 5,
where S is the area of the container sides. Altogether we have

R,

Rapn=Ra R = VAp, (19)

4n2k3c
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which is, as was to be expected, proportional to the volume. It can
be easily checked that equation (19), in the limit as H - 0, changes
to the usual eigenvalue distribution for free motion. Including the
spin, we have

eh
EE=FE+ —H
~2mc”’ (20)
with
eiH p?
E=— =3,
e vn + o @0
so that for every n > 0, we have with the two-fold spin-degeneracy
eH
Rn,Ap = 4n2ﬁzc VAp’ (223')
and for n = 0, we have
R __eH
0,Ap ™ 4_—7:252(; VAp. (22b)

2. In order to obtain the magnetic properties of the system, we
require, as is well known, only to evaluate the summation

Q= — kTZIn(1 + &~ BIkT) (23)

over all eigenvalues; « denotes the so-called chemical potential.
The number of particles N is connected with w by the expression

N= -2 (24)
and the magnetic moment through
0Q
- - (25)

In our case, we have a continuous and a discrete parameter, so
that the summation in equation (23) can be represented as a sum of
integrals. Thus, in order to resolve the effect more clearly, we shall
start from the orbital energies of equation (8) and consider to begin
with the spin only in the multiplicity. If we put

el

e = U, . (26)
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then we have

o—(mn+PuH  py® ) eH
= —kTZ 1 ( = Vip,,.
J- " [1 T\ 2kt | e
n=0 (27)
If, now, for the sake of brevity we write

2 my
- kTJln[ 1 + exp (]—C“lT — z%‘ﬁ):l 5o dps = fl@), (28)

then Q assumes the form »
Q = uH3flo ~ (v + DuH]. (29)

In order to evaluate this sum, we can use the familiar series ex-
pansion

b b a
1

DS+ B =jf(x)d EAGIE (30)

a : a b

Its admissibility requires, in general, that
f:t‘ +1 f x

=T L 31
7 < @31

It can easily be seen in our case that this corresponds to
uH < kT. 32)

This condition is no longer fulfilled at very low temperatures and in
strong fields. On account of this, the latter case should lead to a
complicated, no longer linear dependence of the magnetic moment
on H, which should have a very strong periodicity in the field.
Because of this periodicity, it should be hardly possible to observe
this phenomenon experimentally, since on account of the inhomo-
geneity of the existing field, an averaging will occur. If, however,
we average the series in equation (29) over an interval AH, the
condition for equation (31) will again be fulfilled, if in the
““ dangerous ” part near w — (n + 3)uH = 0, the change of argu-
ment is considerably larger than the difference between the two
successive arguments, i.e.,



174 MEN OF PHYSICS: LANDAU

AH
mpAH > pH, o —5 > pH,

or
AH uH
H > . - (33)
Even with the strongest possible fields (H = 3 x 10° G), the right-
hand side gives only 0-1 per cent with @ = 3eV.
- If we now use the summation formula (30) explicitly, we obtain

-]

i o i+ e 2220 |
© 2 ) a
B J fydx — 24 dw 0] @ (34)

[f(o0) = 0]. The first term of this summation is independent of the
magnetic field. It represents the summation in the field-free state,
so that in place of equation (34) we can write

2H2 629
Q=0Q
T 24 dw?
From this, we obtain
ag u?oQ,
-M= 3
6. 12 ow? H. 33)
If we now put
oQ oF
- =
where
F=Q —-w @
o

is the free energy of the system, then equation (35) becomes

2y g
M=- - - L

23wjoN — ~ 120°FjoN? (36)
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We have thus in reality a diamagnetism, which is exactly equal to
one-third of the Pauli spin-paramagnetism, for which we have, in
the familiar form

H

H 2H? 9%Q
Q=1Q, (w+”——)+1}§20 (w-—%)=£20+li—a 0

8 OJw?

+...
GN

2

Thus, free electrons are altogether still paramagnetic.

If the electrons are found in the periodic field of a lattice, then it
is well known? that their motion can still be considered as free, in
a certain sense. The principal characteristic of the effect of the
magnetic field therefore remains unchanged, although the above
calculation is, of course, no longer quantitatively applicable. In
particular, the ratio of para- and diamagnetism changes, and it is
quite possible that in actual cases the latter can also exceed the
former, so that we obtain a diamagnetic substance like bismuth.
However, this is only possible with a relatively powerful lattice
effect, so that a quantitative theory of this phenomenon should
scarcely be possible. Another effect of the interaction consists in the
fact that the diamagnetism loses its symmetry and now depends on
direction, a property in which this type of diamagnetism differs
from the normal atomic diamagnetism as well as from the neces-
sarily symmetrical spin-paramagnetism.

A similar phenomenon can also take place in non-conducting
substances and indeed with paramagnetic substances, where we also
have a continuous eigenvalue spectrum. Here, we also get discrete
eigenvalues in the magnetic field and, as a result of this—diamagnet-
ism. This diamagnetism is quite small compared with the para-
magnetism which is present, but differs from it by its asymmetry, so
that perhaps it forms the main basis of the observed asymmetry in
paramagnetic crystals (another reason is the so-called magnetic or
relativistic interaction between spins). On this account, it is of
interest to estimate the order of magnitude of the effect. This is
done in the simplest manner dimensionally. The susceptibility is
first of all proportional to (e/c)?, since the action of the magnetic
field is always introduced by eH/c. The mass of the electron m does
not occur explicitly in the calculation, in this case. It plays its role
in the exchange-integral, which characterises the exchange pheno-
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mena in the lattice. Moreover, only % and the density N/V can still
occur in the expression. Clearly this leads to the expression

e2 [V\1/3
1~ i (z_v) J. (38)

The exchange integral J determines as is well known, the Curie
temperature ®, and kO is of the order of magnitude of J, so that in
place of equation (38) we can write

e2 VvV 1/3
X~ g ( N) kO. (39)

The phenomena turn out to be quite different if the external
effects are of a non-periodic nature. Such effects destroy the
direction-degeneracy of the motion and consequently, if they cannot
be assumed to be small, the possibility that the field produces an
effect of the type investigated here. This requires that the *‘ mean
free path ” corresponding to this effect is small compared with the
diameter of the electron orbits in the magnetic field. Since this
diameter in normal fields is of the order of magnitude of a tenth of a
millimetre, then even very small impurities or even powdering of
the substance can suffice. Such changes of susceptibility have been
detected in bismuth, and for the first case in a whole range of sub-
stances. It would be of great interest to be able to observe in these
cases a change of susceptibility with field, which ought to take place
according to the present theory, when ry > A (ry is the radius of the
orbit in the magnetic field, 4 is the mean free path or the dimensions
of the crystal) changes to ry < A.

In conclusion, I should like to make the suggestion that the
phenomena which have been investigated might explain also the
Kapitza effect of linear resistance changes in a magnetic field. For
the admissibility of the free electron approximation in a magnetic
field, it is not necessary that ry be smaller than the mean free path
corresponding to the lattice (which would be impossible at normal
temperatures), because the interaction with the lattice oscillations
involves, apart from momentum transfer, also energy transfer.
However, according to the foregoing remarks, it is probably essential
that r; be considerably smaller than the mean free path of the
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lattice distortions, which leads, after short calculations, to the
expression

H> ec ]—;R, (40)

where R is the specific resistance (in electrostatic units) of the crystal.
If inequality (40) is not fulfilled, then the method considered here is
not applicable and it can be seen quite easily that all the effects of
the field must be necessarily quadratic. The field in expression (40)
is in good agreement with the critical field of the Kapitza experi-
ments, which should lend support to the theory. I have not yet
succeeded in presenting a quantitative development of the theory.

At this stage, I should like to thank sincerely Mr P. Kapitza for
discussions of the experimental results and for the communication
of certain unpublished data.
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